Linear variational method#

\[ \phi = \sum_i c_i f_i \]
  • \(c_i\) -Variational coefficients

  • \(f_i\) Trial functions

  • Example: \(\phi(x) = c_1 sin (2x)+c_2 sin(2x)\)

Minimizing energy by varying linear coefficients#

\[ \mid \phi \rangle = \sum_i c_i \mid f_i \rangle \]
\[ E(c_1,c_2,...c_N) = \frac{\langle \phi \mid \hat{H} \mid \phi \rangle}{\langle\phi \mid \phi \rangle} \]
\[ E(c_1,c_2,...c_N) = \frac{\sum_i \sum_j c_i c_j\langle f_i \mid \hat{H} \mid f_j \rangle}{\sum_i \sum_j c_i c_j\langle f_i \mid f_j \rangle} = \frac{\sum_i \sum_j H_{ij}}{\sum_i \sum_j c_i c_jS_{ij}} \]

It’s a linear algebra problem#

\[\mid \phi\rangle = c_1\mid f_1\rangle+ c_1\mid f_2\rangle\]
\[E(c_1,c_2) = \langle \phi \mid \hat{H} \mid \phi \rangle \]

Minimizing \(E(c_1,c_2)\) with respect to (\(c_1\),\(c_2\)) gives rise 2 linear equations.

\[ c_1(H_{11}-ES_{11})+c_2(H_{11}-ES_{12}) = 0 \newline c_1(H_{21}-ES_{21})+c_2(H_{21}-ES_{22}) = 0 \]

The set of linear equations has nontrivial solution only when determinant of matrix elements is zero:

\[\begin{split} \begin{vmatrix} H_{11}-ES_{11} & H_{12}-ES_{12} \\ H_{21}-ES_{21} & H_{22}-ES_{22} \\ \end{vmatrix} = 0 \end{split}\]

Determinant for N trial functions#

Variational minimization of coeffients of N trial functions \((c_1, c_2,...c_N)\) leads to an N by N determinant:

\[ \mid \phi \rangle = \sum_i c_i \mid f_i \rangle \]
\[\begin{split} \begin{vmatrix} H_{11}-ES_{11} & H_{12}-ES_{12} & \dots & H_{1N}-ES_{1N} \\ H_{21}-ES_{21} & H_{22}-ES_{22} & \dots & H_{2N}-ES_{2N} \\ H_{31}-ES_{31} & H_{32}-ES_{32} & \dots & H_{3N}-ES_{3N} \\ \dots & \dots & \dots & \dots \\ H_{N1}-ES_{11} & H_{N2}-ES_{N2} & \dots & H_{NN}-ES_{NN} \end{vmatrix} = 0 \end{split}\]